The `DOMMatrixReadOnly`

interface represents 4x4 matrices, suitable for 2D and 3D operations. If this interface defines only read-only matrices, the `DOMMatrix`

interface which inherits from it, add all the properties and the methods to allow to have modifiable matrices.

Documentation DOMMatrixReadOnly by Mozilla Contributors, licensed under CC-BY-SA 2.5.

See also:

### Constructor

### Variables

`read onlya:Float`

Are `double`

representing each component of a 4x4 matrix needed for 2D rotations and translations. They are aliases for some components of the 4x4 matrix:

```
<tr>
2D
3D equivalent
</tr>
<tr>
<td><code>a</code></td>
<td><code>m11</code></td>
</tr>
<tr>
<td><code>b</code></td>
<td><code>m12</code></td>
</tr>
<tr>
<td><code>c</code></td>
<td><code>m21</code></td>
</tr>
<tr>
<td><code>d</code></td>
<td><code>m22</code></td>
</tr>
<tr>
<td><code>e</code></td>
<td><code>m41</code></td>
</tr>
<tr>
<td><code>f</code></td>
<td><code>m42</code></td>
</tr>
```

`DOMMatrix`

aren't.`read onlyis2D:Bool`

Is a `Boolean`

indicating if the matrix contains a 2D matrix and only accept 2D transformations.

`read onlyisIdentity:Bool`

Is a `Boolean`

indincating if the matrix identity, that is a matrix with `1`

on the components of its diagonal, and `0`

elsewhere.

### Methods

`rotate(angle:Float, originX:Float = 0.0, originY:Float = 0.0):DOMMatrix`

Returns a `DOMMatrix`

containing a new matrix being the result of the original matrix being rotated by the given angle, with the rotation centered on the origin given. The original matrix is not modified.

`rotateAxisAngle(x:Float, y:Float, z:Float, angle:Float):DOMMatrix`

Returns a `DOMMatrix`

containing a new matrix being the result of the original matrix being rotated by the given angle and the given vector. The original matrix is not modified.

`rotateFromVector(x:Float, y:Float):DOMMatrix`

Returns a `DOMMatrix`

containing a new matrix being the result of the original matrix being rotated by the angle between the given vector and (1,0), centered on the origin given. The original matrix is not modified.

`scale(scale:Float, originX:Float = 0.0, originY:Float = 0.0):DOMMatrix`

Returns a `DOMMatrix`

containing a new matrix being the result of the matrix x and y dimensions being scaled by the given factor, centered on the origin given. The original matrix is not modified.

`scale3d(scale:Float, originX:Float = 0.0, originY:Float = 0.0, originZ:Float = 0.0):DOMMatrix`

Returns a `DOMMatrix`

containing a new matrix being the result of the matrix x, y and z dimension being scaled by the given factor, centered on the origin given. The original matrix is not modified.

`scaleNonUniform(scaleX:Float, scaleY:Float = 1.0, scaleZ:Float = 1.0, originX:Float = 0.0, originY:Float = 0.0, originZ:Float = 0.0):DOMMatrix`

Returns a `DOMMatrix`

containing a new matrix being the result of the matrix x, y and z dimension being scaled by the given factor for each dimension, centered on the origin given. The original matrix is not modified.

`skewX(sx:Float):DOMMatrix`

Returns a `DOMMatrix`

containing a new matrix being the result of the original matrix being skewed along the x-axis by the given factor. The original matrix is not modified.

`skewY(sy:Float):DOMMatrix`

Returns a `DOMMatrix`

containing a new matrix being the result of the original matrix being skewed along the y-axis by the given factor. The original matrix is not modified.

`toFloat32Array():Float32Array`

Returns a `Float32Array`

containing the 6 components (`a`

, `b`

, `c`

, `d`

, `e`

, `f`

) in the case of a 2D matrix or the 16 components (`m11`

, `m12`

, `m13`

, `m14`

, `m21`

, `m22`

, `m23`

, `m24`

, `m31`

, `m32`

, `m33`

, `m34`

, `m41`

, `m42`

, `m43`

, `m44`

) for a 3D matrix.

Throws:

`null` | DOMError |
---|

`toFloat64Array():Float64Array`

Returns a `Float64Array`

containing the 6 components (`a`

, `b`

, `c`

, `d`

, `e`

, `f`

) in the case of a 2D matrix or the 16 components (`m11`

, `m12`

, `m13`

, `m14`

, `m21`

, `m22`

, `m23`

, `m24`

, `m31`

, `m32`

, `m33`

, `m34`

, `m41`

, `m42`

, `m43`

, `m44`

) for a 3D matrix.

Throws:

`null` | DOMError |
---|

`transformPoint(?point:Null<DOMPointInit>):DOMPoint`

Returns a `DOMPoint`

that is the point given in parameter multiplied by the matrix. ButÂ the original point and the matrix aren't modified.